If it's not what You are looking for type in the equation solver your own equation and let us solve it.
32x^2-8x-5=0
a = 32; b = -8; c = -5;
Δ = b2-4ac
Δ = -82-4·32·(-5)
Δ = 704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{704}=\sqrt{64*11}=\sqrt{64}*\sqrt{11}=8\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8\sqrt{11}}{2*32}=\frac{8-8\sqrt{11}}{64} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8\sqrt{11}}{2*32}=\frac{8+8\sqrt{11}}{64} $
| 91-n=10 | | 4x^2=-288x-36 | | 13+n=13 | | 4x^2+288x+36=0 | | 50x+5=7x+25 | | (37b-b)-9(4b+1)=-6 | | 6x-25+4x-15=180 | | 10+n=91 | | 9/11=18/y | | 21=5–r | | 95=4-33x | | X=2y=7 | | 2×x-4=20 | | (x^2-2x+6)+(5x^2-1/(x+3))=33 | | 2x+57=3x+17 | | (3÷x)=(5÷x-2) | | x+21+x+23+x+23=180 | | |2x+5|+20=5 | | 2q^2-12q=16 | | X^3+x-2400=0 | | 2x-0.2=3x | | 9x-54=-27 | | 2m/3+1=m+21/6 | | 0-3y=-27 | | Y=1-2x² | | –6p–3=9 | | -(-6+2y)-4y=-3(6-2y) | | –12=5r+8 | | x+10=3(2-x) | | -1/3+5/3=-1/3u-4/3u | | 2(3x+5)=8x+6-2x+4 | | 7(g–83)=42 |